Thorium(IV) and Dioxouranium(VI) Chelates of Aromatic Amine N-Oxides

ANANT K. SRIVASTAVA, (MISS) SHASHI SHARMA and RAM K. AGARWAL*

Department of Chemistry, Meerut College, Meerut 250001, India

Received November 23, 1981

Thorium(W) and dioxouranium(VI) chelates of $1,10$ -phenanthroline $N-N'$ -dioxide (phenO₂) and dioxouranium(VI) chelates of mono N-oxides of 2,2[']*bipyridine (bipyN0) and I,lO-phenanthroline (phenNO) of the general composition ThX₄ · 2phenO₂* $(X = CI, Br, NO₃ or NCS); ThX₄·3phenO₂ (X = ClO₄)$ *or I)*; $UO_2X_2 \cdot 2L$ ($X = Cl$, Br, and $L = bipyNO$, *phenNO or phen₂);* $UO_2(NO_3)_2 \cdot L$ *;* $UO_2X_2 \cdot 3L$ *(X = CIO₄* or *I*) and $UO_2(NCS)_2 \cdot 1.5L$ have been synthe*sised and characterized employing i.r. spectral, molar* conductance, molecular weights, d.t.a. and t.g.a. *data. phenOz acts as O,O-bidentate ligand while bipyN0 and phenN0 act as N,O-bidentate ligands. The coordination number of thorium in these complexes is either 6, 8 or 12; in uranium the coordination number is either 7 or 8 depending on the nature of the anions.*

Introduction

In continuation of our work [l] on mono N-oxides of $2,2'$ -bipyridine and 1,10-phenanthroline chelates of thorium(IV), we report herein on thorium(IV) and dioxouranium(VI) chelates of $1,10$ phenanthroline N-N'-dioxide (phenO₂) (I) and dioxouranium(VI) chelates of mono N-oxides of $2,2'$ bipyridine (bipyNO) and 1,10-phenanthroline (phenNO). The donor properties of phenO₂ have been studied to a limited extent $[2, 3]$, whereas dioxouranium(V1) complexes of pyridine N-oxides $[4]$, 2,2'-bipyridine N-N'-dioxide $[5-7]$ have already been reported.

^{*}Department of Chemistry, L. R. Post-Graduate College, Sahibabad (Ghaziabad).

Experimental

Materials

Thorium(W) salts, the ligands bipyN0 and phenNO were prepared as reported earlier [1]. AnalaR-grade uranyl nitrate was obtained from B.D.H. Uranyl halides were prepared from nitrate while perchlorate was prepared as reported earlier $[8]$. The ligand phenO₂ was prepared by the method described for $2,2'$ -bipyridine N-N'-dioxide [9, 10]. 2,2'-dimethoxypropane (Aldrich Chemical Company, Inc. U.S.A.) and other reagent grade organic solvents were used throughout.

Preparation of the Complexes

Dioxouranium(V1) complexes of bipyN0 and phenN0 were prepared by a similar method as that used for thorium(IV) complexes $[1]$. Thorium(IV) and dioxouranium(VI) complexes of phen O_2 were prepared by the following general method. Metal salt was dissolved in a mixture of absolute EtOH and a dehydrating agent 2,2'-dimethoxypropane and warmed on a water bath for 1 h; phen O_2 was dissolved in hot absolute EtOH. The two solutions were mixed and refluxed for 1 h. The complexes were generally isolated as fine crystals. These were filtered, washed with EtOH and finally with anhydrous $Et₂O$ and dried *in vacuo* over P_4O_{10} .

All the physical measurements and analyses were performed as reported earlier [1]. Uranium was estimated as U_3O_8 [11]. The analytical results are presented in Table I.

Results and Discussion

The molar conductances of the complexes in MeNO₂ and PhNO₂ (ca. 10^{-3} *M*) determined at room temperature are given in Table I. The chloro, bromo, nitrato and thiocyanato complexes are non-electrolytes in both solvents. The iodo and perchlorato complexes dissociate in these solvents and behave as unibivalent , only thorium(IV) perchlorate complex being uni-tetravalent electrolyte. The molecular weight

0020-1693/82/0000-0000/\$02.75 0 CElsevier Sequoia/Printed in Switzerland

 $a_{\text{In PhNO}_2}$. $b_{\text{In MeNO}_2}$. $c_{\text{Partially soluble}}$.

data (Table I) also support the above mentioned I.R. Spectra electrolytic behaviour of the complexes. The Table II records important i.r. bands for the magnetic moments of thorium(IV) and dioxoura-

ligands and the complexes. The assignments are largely

nium(VI) complexes indicate them (as expected) to based on the previous work on these ligands [1, 2] be diamagnetic $[1, 12, 13]$.
and i.r. studies of thorium(IV) and uranyl(VI)

 $\frac{\partial}{\partial t}$ ments of thorium(IV) and dioxoura- ligands and the complexes. The assignments are largely

Amine N-Oxide Chelates of Th(IV) and U(VI)

TABLE II. Partial^a I.R. Spectral Data^b of phenO₂, phenNO and bipyNO and their Metal Chelates.

Compound	$\nu(N-O)$	$\nu(M-O)$	$\nu(M-N)$	$\nu(M-X)$
phenO ₂	1312s			
	1282s			
$ThCl4 \cdot 2phenO2$	1280s	410m		250m, br
ThBr ₄ . 2phenO ₂	1265m	402sh		
	1290s	405m		175m
	1270m			170m,sh
				165w
ThI ₄ . 3phenO ₂	1290m 1280m	402m		135m
$Th(CIO4)4 \cdot 3phenO2$	1270s	398m		120w
	1260m			
$Th(NO3)4 \cdot 2phenO2$	1272s	405m		
	1262m			
$Th(NCS)4 \cdot 2phenO2$	1280s	395m		
	1270m			
$UO_2Cl_2 \cdot 2$ phen O_2	1272s	330m		260m, br
	1260m			
$UO_2Br_2 \cdot 2phenO_2$	1280s	325m		165m
	1265m			
$UO2I2 \cdot 3$ phen $O2$	1290m	320m		
	1282m			
$UO2(ClO4)2 \cdot 3$ phenO ₂	1270s	332m		
	1260m			
$UO2(NO3)2$ ·phenO ₂	1270s	335m		
	1262m			
$UO2(NCS)2 \cdot 1.5$ phen $O2$	1280s	325m		
phenNO	1265m			
	1270s	--		
$UO_2Cl_2 \cdot 2$ phenNO $UO2Br2 \cdot 2phenNO$	1250s			
	1220s	325m	255m	258m, br
	1205m			
	1230s	320m	250m	160m
$UO_2I_2.3$ phenNO	1210s 1235m	318m	250m	
	1210s			
$UO2(ClO4)2 \cdot 3$ phenNO	1230s	330m	255m	
	1205m			
$UO_2(NO_3)_2 \cdot$ phen NO	1233m	332m	260m	
	1210m			
$UO2(NCS)2 \cdot 1.5$ phenNO	1220m	320m	250m	
	1210s			
bipyNO	1250s	-		
	1230s			
$UO_2Cl_2 \cdot 2$ bipyNO	1235s	320m	250m	264m
	1210s			
$UO_2Br_2.2bipyNO$	1240s	318m	252m	162m
	1210m			
$UO2I2$. 3bipyNO	1240s	315m	245m	
	1205m			
$UO2(ClO4)2 \cdot 3$ bipyNO	1215s	330m	255m	
	1205m			
$UO2(NO3)2$ · bipy NO $UO2(NCS)2 \cdot 1.5$ bipyNO	1220s	335m	255m	
	1207m			
	1230s	320m	252m	
	1210m			

 $\overline{b}_{\text{In cm}}^{-1}$. $\mathbf{c}_{\mathbf{X}} = C\mathbf{I}$, Br, or I. ^aDetailed i.r. data on the complexes can be obtained from the author.

chelates with $2.2'$ -bipyridine $[5, 14]$, 1.10 -

phenomenanthrough $[1, 14]$, $[1, 10]$ $\frac{14}{16}$ In $[0, 7, 10]$.

between μ and μ and μ and μ and μ and μ $\frac{1}{100}$ have been observed at 1250 and 1250 cmfor case of dipying [1], 1270 and 1230 cmphenove [1] and 1312 and 1202 cm for $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$ (2, 3). These bands have been observed $\frac{1}{\pi}$ to lower frequencies upon complex forma- $\frac{1}{2}$ in the decrease in the requency of the ν _{[N}-O) vibration is attributed to O_1O chelation in phen O_2 and oxygen coordination of phenO and $\frac{1}{2}$ and oxygen coordination of pheno and 880-800 cm-' region have been assigned to NO $880-800$ cm⁻¹ region have been assigned to NO bending mode, and from the tabulated data it appears that these absorptions change only slightly on complexation [17]. This further supports oxygen linkage between metal and the ligands. Coordination through the nitrogen atom of the pyridine fragment of bipyNO and phenNO is suggested by frequency shifts and splittings of the several i.r. bands associated with vibration of this fragment $\begin{bmatrix} 1, & 18-20 \end{bmatrix}$. In the far infrared region metal-ligand vibrations are tentatively assigned to $\nu(M-0)$ and $\nu(M-N)$ modes. The overall i.r. spectral evidence suggests that $phenO₂$ acts as O,O-bidentate chelating agent forming sevenmembered chelate; while bipyNO and phenNO act as bidentate O,N-chelating agents forming six-membered rings. $(T\cap Y)$ in all dioxourance $(T\cap Y)$

 $p(\theta - \theta)$ in an dioxomanium virtuologie plexes has been assigned at ca. 960 and 920 cm^{-1} as asymmetric and symmetric frequencies [5, 6, 21]. T_{t} metal-halogen \mathbf{r} modes in the spectral-halogen in the spectra

The metal-nalogen $[1, 22]$ modes in the spectra of the complexes (Table II) have also been assigned tentatively in the present study. The strong ν_3 and ν_4 bands in the spectra of perchlorato complexes occur unsplit at ca. 1090 and 625 cm^{-1} respectively, showing the ionic character of the perchlorato groups [6, 8, 11]. The $\nu(C-N)$ frequency in the actinide thiocyanate complexes lie in $2080-2060$ cm⁻¹ region and $\nu(C-S)$ frequency at ca. 820 cm⁻¹ strongly suggesting N-bonded NCS $[23, 24]$. The i.r. spectra of the nitrato complexes show the absence of ν_3 bands at ca. 1360 cm⁻¹ due to ionic nitrate $[25]$. The bidentate nature of covalent nitrato groups in Th $(NO_3)_4$ 2phen O_2 has been established by comparing the i.r. bands at ca. 1505 (v_4) , 1285 (v_1) , 1035 (ν_2) , 800 (ν_6) and 730 (ν_3/ν_5) cm⁻¹ with the spectral bands of Th(NO₃)₄ · 5H₂O at 1520, 1290, 1030, 808, $\frac{1}{2}$ at 1320, 1250, 1030, 600, 1030, 1050, $\frac{1}{2}$ and $\frac{1}{3}$ cm respectively [20, 27]. In $\frac{1}{2}$. $(NO₃)₂·L$ (L = bipyNO, phenNO or phenO₂) the nitrate groups also seem to be bidentate since the i.r. frequencies at $ca. 1520. 1280. 1032. 800$ and 740 cm^{-1} in these complexes due to this group occur almost at the same frequencies as reported earlier [25, 28, 29].

l'hemal Behaviour

The differential thermal behaviour of thorium(IV) The differential thermal behaviour of diotium(λ) in previous of prietrog is antibox similar to that of other aromatic amine N-oxide complexes $[1, 16, 30]$. All the complexes decompose below *ca*. 280 °C. A final exothermic peak below 700 \degree C in all the complexes is due to the formation of $ThO₂$. The t.g.a. of the complexes is more or less similar to that of phen-NO complexes [1].

The thermal behaviour of uranyl complexes of amine N-oxides has been studied to a limited extent $[5, 8]$. The d.t.a. of the uranyl(VI) complexes of amine N-oxides reveal that halo and nitrato com- μ proximus reveal that have and intrato comzes decompose endomentionity, with peremotive complexes decompose exothermically with evolution of smoke. In iodo complexes the peak at ca . 150 \degree C may be due to loosely-bonded iodide present in the complexes. All the complexes decompose below ca. 320 °C. A final exothermic peak at ca. 550 °C in all the complexes is due to the formation of U_3O_8 . The thermogravimetric experiments show that in uranyl- (VI) complexes all the attached ligand molecules are lost between $270-320$ °C. At ca. 550 °C the decomposition is complete. In all the cases U_3O_8 is obtained as end product. On the basis of thermal tamed as the product. On the basis of thermal $t_1 = t_1 + t_2 + t_3$ plex, the thermal stability of diary $n(x)$ complexes of bipy NO, phen NO and phen O_2 is in the order:

Nitrate > Chloride > Perchlorate > Bromide >

> Thiocyanate

Acknowledgements

The authors are grateful to Prof. T. N. Srivastava, Lucknow University, for taking keen interest in the whene σ is the area of the to University Grants The Highly are also due to University Grants Commission, New Delhi, and C.S.I.R., New Delhi for financial support.

References

- R. K. Agarwal, Veena Kapur, Sunita Sharma, P. C. Jain and A. K. Srivastava, *Trans. Met. Chem., 5, 237* (1980). and A. K. Srivastava, *Trans. Met. Chem.*, 5, 237 (1980).
- 2 B. E. Bridgland and W. R. McGregor, *J. Inorg. Nucl. Chem., 43, 31* (1969). C. Chassapis and G. Pneumatikakis, *Inorg. Chim. Acta,*
- *27, 67 67* I. S. Ahuja and Rajinder Singh, *J, Inorg. Nucl. Chem., 35,*
- *5. Ahuja and Rajinder Singh, J. Inc.* 561 (1973) and references therein.
- 5 P. V. Balakrishnan, S. K. Patil, H. D. Sharma and H. V. Venkatasetty, Canad. J. Chem., 43, 2052 (1965).
- 6 S. K. Madan and A. M. Donohue, *J. Inorg. Nucl. Chem.*, 28, 1303 (1966). I. S. Ahuja and Rajinder Singh, *Speetrbchim. Acta (A),*
- **29. Anuja and Ra**
- 8 P. Ramamurthy and C. C. Patel, *Canad. J. Chem.,* 42, 856 (1964).
- *9* G. M. Badger and W. H. F. Sasse, *J. Chem. Sot.,* 617 10 P. G. Simpson, A. Vinciguerra and J. V. Quarzliano. (1956).
- *INOR, Chem., 2, 202 (1903).*
1 K. W. Boanall and M. W. Wakerley, *J. Less Common Inorg. Chem., 2, 282 (1963).*
- 12 E. D. Eastman, L. Brewer, L. A. Bromely, P. W. Gilles *Mets., 35, 267 (1974).*
- 13 R. E. Connick and 2. Z. **Hughes,** *J. Am.* Chem. Sot., a. D. Bastman, E. Brower, E. A. Bromery, I. W. Omes
ad M. J. J*eferson, J. Am. Chem. Sot., 72, 4010* and N. L. Lofrgram, J. Am. Chem. Soc., 72, 4019 (1950).
- 14 T. N. Srivastava, S. K. Tandon and Neelu Bhakru, J. 74, 6012 (1952).
- 15 L. C. Nathan and R. 0. Ragsdale, *Inorg. Chim. Act, 3, Inorg. Nucl. Chem., 40,* 1180 (1978).
- 16 R. K. Agarwal, A. K. Srivastava and T. N. Srivastava, *J. 473 (1969).*
- 17 N. M. Karavannis. A. N. Sneca. D. E. Chasen and L. L. *Inorg. Nucl.* Chem., 42, 1366 (1980).
- Pytlewski, *doord. bhem. Rev., 2b, 37 (1976).* Pytlewski, *Coord. Chem. Rev.*, 20, 37 (1976).
- 18 R. G. Inskeep, J. Inorg. Nucl. Chem., 24, 763 (1962).
- **19** S. Kida, J. V. Quagliano, J. A. Walmsley and S. Y. **20** *S.* P. Sinha, *Spectrochim. Acta, 20, 879 (1964).* Thyee, *Spectrochim. Acta, 19, 189 (1963).*
- **21** *C. G.* Barraclough, J. Lewis and R. S. Nyholm, *J. Chem.*
- **22** P. J. Alvey, K. W. Bagnall, D. Brown and John Edward, *Sot., 3552 (1959).*
- **23** V. V. Savant and C. C. Patel, *J. Less Common Mets., 24, J. Chem. Sot. (Dalton), 2308 (1973).*
- **24** *Z.* M. S. Al-Kazzaz, K. W. Bagnall and D. Brown, *J. Inorg. 459 (1971).*
- **25** B. M. Gatehouse, S. E. Livingstone and R. S. Nyholm, *Nucl.* Chem., 35, 150 (1973).
- *J. M. Gatenouse, S. E. Livings*
- **6 J. Chem. 300., 4222 (1937).**
6 J. R. Ferraro and A. Walker, *J. Chem. Phys., 45, 550**(1966)***. 27** J. C. Taylor, M. H. Mueller and R. L. Hitterman, *Acta*
- $\overline{2}$ *Crystallogr., 20, 842 (1966). G.* Topping, *Spectrochim. Acta, 21, 1743 (1965).*
- **29** J. L. Bullock, *J. Inorg. Nucl.* Chem., 29, 2257 (1967).
- **30** R. K. Agarwal, 'Studies on complexing behaviour of oxygen donor molecules with Th(IV) and Zr(IV)', *Ph.D.* oxygen donor molecules with Th(IV) and Zr(IV)', Ph.D.
Thesis, 1979, Meerut University, Meerut (India).